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FOREWORD

This report is an outgrowth of the research program sponsored
by the (MC on fiber propertiss and on the translation of these propere
ties into yarn and fabric structures. The graphical technique,
which was developed during the course of this work, provides a
relatively simple means of applying the geometrical analyses of
fabrie structure developed by Dr. F. T. Peirce over fifteen
Years ago. The graphs may be utilized to supplement and extend
the work on the interrelationship of fiber and yarn properties
which has been published previously in Textile Series. Reports
No. 60 and No. 62 and to integrate this information as a basis
for predicting the mechanical performance of woven fabrics.

It is gratifying that increasing use is being made of the
work of Peirce by textile technologists to facilitate the design
and to understand the performance of textile fabrics. Even greater
use of his work would result by the elimination of the tedicus
work involved in the solution of his equations and the computa=
tions that are necessary to derive his basic geometrical
parameters. : L

Through the use of the graphs which are described in this
report much of the computational work is eliminated. With basic
knowledge of the texture, yarn counts and crimp, the complete
geometry of the fabric can be obtained and the changes in the
geometry due to shrinkage, swelling, flattening, and crimp inter-
change can be predicted. \

It is hoped that the publication of this report provides
additional stimulation to the textile technologist to apply the
findings of Peirce to the improvement of the design and
functional performance of textile fabrics.

S. J. KENNEDY
Research Director
for ‘
Textiles, Clothing and Footwear

June 1952
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ABSTRACT

Graphs have been developed to simplify the study of -
fabric geometry. A simultaneous plot of the mathematical
relations developed by Peirce aids in visualizing dimensional
changes in fabrics and gives accurate values of the various
parameters without lengthy calculations and interpolations from
-tables. ‘

The use of the graphs is discussed as they apply to
various types of weaves, fibers, and their dimensional changes.
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MECHANICS OF ELASTIC PERFORMANCE OF
TEXTILE MATERIALS

GRAPHICAL ANALYSIS OF FABRIC GEOMETRY
E. V. PAINTER

‘

Fabric Research Laboratories, Inc., Boston, Massachusetts

INTRODUCTION

The modern developments in new fabric treatments and
weaving of new fibers have not been alded as much as they should
have been by a well-developed theory of the form and changes there-
in of fibrous structures., The cross-sectional swelling of a
rayon fiber can be determined accurately in the laboratory, but
by the time this fiber is twisted into a yarn, which is then woven
into a complex geometric form, it is practically impossible to
follow rigorously the chain of events which relate this simple
change in the fiber to the dimensional changes observed in the
fabric. The endless variety of fibers, twists, and weaves makes
the Job almost impossible of solution by empirical methods. The
only alternative is the development of a theory of ideal behavior,
so that each specific case may be reduced to a simple study of
deviations from the ideal.

The brilliant mathematical analyses of Peirce(l’z) have
laid the groundwork for this theory of the ideal. However, consider-
able calculation and lengthy interpolations from tables are required
to make use of his work. Peirce recognized this difficulty and
suggested the use of graphs for particular relations. This idea
has been carried a little further in the present study; one graph
is presented herein which depicts all of the relations of the ideal
plain-weave geometry, much in the manner of a psychrometric chart
or Mollier diagram. The use of the graphs is described in the
following section, while the details of derivation and method of
construction are given in the Appendix. Peirce'’s nomenclature
is used throughout.

USE OF THE GRAPHS

The main graph is shown in Figure 1, and the auxiliary
graph in Figure 2. The main graph depicts the geometrical relations
of the plain weave, while the auxiliary graph gives related in-
formation in terms of thread count and yarn number.

Description of the Main Graph

In Figure 1 any plain-weave fabric is fully defined by
a pair of two related points which can be located on the graph to
glve numerical values for ten of the eleven variables (D is the
elevgnth) which define a fabric structure. This is made possible
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by the superposition of several sets of curves and lines on a
background set of rectangular coordinates relating % crimp to
reduced cover factor. From the location of one of the points

on the graph, it is possible to read off directly the reduced
cover factor for the filling yarns, Ks, and the following values
for the warp yarns: the % crimp, %Cy; the fraetional length of
yarn between two filling yarns, lﬁ/D; the fractional maximum
amplitude, hy/D; and the maximum angle of inclination, @;. The
other point of the pair locates the value of the reduced cover
factor for the warp yarns, K., and the following values for the
filling yarns: the % crimp, #Cs¢; the fractional length of yarn
between two warp yarns, }f/D; the fractional maximum amplitude,
hf/D; and the maximum angle of inclination, 8¢, Thus, it might
be said that one point represents the geometry of the warp yarns
versus thelfpgping of the filling yarns, Ky, while the other point
represents the /geometry of the filling yarns versus the spacing of
the warp yarns, K;. The two points are located on the graph in
relation t6 one another by the simple fact that

hw/D # hr/D = 1.0, (1)
The set of curves on the graph (Figure 1) giving values of n/D
are those curving upward to the right. The heavy line for n/D = 0.5
separates the upper part of the graph from the lower; one of the two
points defining a fabric must lie above this line, and the other
below it, except for the special case when both points are directly
on it. The upper left boundary of the graph is the line h/D = 1.0;
when one of the points is on this line, the other must be on the
base line at h/D = O.

The straight lines inclined to the right in Figure 1
give values for 1/D. In depicting the interchange of crimp between
warp and filling yarns of a fabric, the two points defining the
fabric must move along these straight lines, one point up and the
other down (keeping hy/D # hg/D = 1.0). One of the points must
1ie on or to the left of the line marked 1 = 1.5708, in order to
allow the other set of yarns to straighten out completely, a
complete straightening represented by the point being located on
the base line. However, if both points lie to the right of the
line 1 = 1.5708, then neither set of yarns can ever assume a
straight-line configuration, and the minimum crimp possible in
either set of yarns is governed by the condition in which they
“are jammed against the other set of yarns. This condition occurs
where the top of the 1/D line terminates at the "jam line," which
is the upper right-hand boundary of the graph along which various
values of A have been laid out.

> N 12/11 (where 12<l]_) (2)
The ratio is always taken so thatPwe= 1.0, regardless of whether

the length of yarn between crossovers, 1, for warp or for filling
must be placed in the numerator. The value of . expresses the

--h—.



"squareness" of a fabric——i.e., values of near 1.0 indicate
square interstices, and fhe interstices become mors and more
oblong as A decreases. The W\ lines are laid on the graph in pairs,
one line referring to the point for the warp yarns and the other
line referring to the point for the filling ysrns. Thus, if the
point for the filling yarns lies at maximum crimp on the jam line
(esge, point 8, Figure 3), then the point for the warp yarns must
lie at minimum crimp at the intersection of the line and the

1,/D line (e.g., point 12, Figure 3). The » lines are especially
helpful in the design of fabrics, since yarns do not slip along
one another at the crossovers; and, hence, the setup in the fabric
at the loom remains the same for the life of the fabriec.

One more set of lines on the main graph remains to be
discussed. The straight lines inclining upward to the left give
values of 6, the angle of maximum inclination of a yarn to the
plane of the fabric. The value of this angle is of little use in
~most fabric-geometry problems, except where it might be used in
the calculation of stress translations in tensile-strength com-—
putations. The angle & is important in the basic theory of fabric
geometry since it occurs in four of the seven simultaneous equations
which link the eleven variables defining the plain weave.

Examples of Use of the Mgin Graph

There are three major changes in shape of the unit cell
outlined by Peirce which cause concomitant changes in fabric
dimensions: (1) crimp interchange, (2) yarn swelling, and (3) yarn
flattening. The geometry of these various shapes is shown in
Figure 3 in relation to the points on the main graph which depict
them (points 8-15). In addition, Figure 3 shows the shapes of
the unit cell at various other "limiting" points on the graph
(points 1-7). :

The assumptions and calculations necessary to construct
the examples are given in Table I. A tight-weave fabric was chosen
in order to demonstrate the use of the jam line in defining limit-
~ ing values. For a fabric with neither yarn jammed, it is necessary
to fix four of the eleven variables which define any plain-weave
fabric; if one yarn is jamred, only three of the values are needed
for definition of the fabric structure; if both yarns are jammed,-
only two values need be known. Actually, in the last case, the
geometry of the structure can be defined by the ratio A = 1,/1;,
but the scale will not be fixed unless one other value is fixed,
such as one of the 1l's. The variable D can bé regarded as the
scale factor which fixes linear fabric dimensions such as threads
per inch, thickness; yarn diameter, etc. Finding the finite value
of D and these attendant fabric dimensions is the function of the

- 5 =
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The two 1/D values chosen for the loom—-state example in

Table I were selected rather arbitrar
was selected since hy/D = 0.500 at this point.

state fabric has minimun filling erimp,
the Jam line for a tight-woven fabr



point of the graph and it is useful to show a drawing of the con=-
figuration at this point. The 1¢/D = 1.265 was selected since it
hits the jam line at‘hf/D = 0.700, which is a convenient inter~ -
mediate point to show in the drawing. After the assumption of .

these initial values, the changes in geometry which follow can be
calculated as shown in Table I without further assumptions except
as to whether the yarns remain round or are permitted to flatten.

The diameters of yarns shown in the examples in Figure 3
were chosen so that]g = l.5~~that is, df = 1.5 dy, or 1r1g7ﬁ37= 1.5.
However, it should be pointed out that the fabric geometry and changes
therein would be the same whatever;?was chosen. As long as the sum
dy + dy = D remains constant, the geometry is unchanged.

In the examples of crimp interchange, swelling, and
flattening in Table I, it can be seen that the basic assumption is
that yarns do not slip at crossovers~-that is, the values of 1,
and 1l¢ remain constant throughout all changes of geometry. This is
one of the basic concepts of fabric dynamics.

In the example of flattening given in Table I, the
assumption was made that the final state of crimp was determined
by the h/D's remaining constant. As Peirce pointed out, it is
always difficult to predict the state of crimp balance remaining
in a fabric after a change in D (either flattening of yarns or
partial, but not maximum, swelling; crimp balance is defined by >.
for maximum swelling). Of course, reasonable assumptions as to
state of crimp balance can be made once the cause of the change
in D is known. For instance, for partial swelling, the crimp
balance tends towards the so-called "normal erimps," as defined
by the h/D's which intersect the Jam line at the ™ value of the
fabric. Thus, if the sample fabric were dried back to the origi-
nal loom-state yarn diameters after swelling, the normal crimps
would be given as follows: normal #C, = 10.7 at intersection
of hy/D = 0.415 and 1w/D = 1.047 (K = 14.8); and normal %C; = 16.8
at intersection of hf/D = 0.585 and 1¢/D = 1.265 (Kw = 12.9). The
crimp balance to be expected in the case of flattening by calender-
ing would be defined, as Peirce pointed out, by equating the sum
of warp yarn diameter plus its amplitude, hy, to the sum of filling
yarn diameter plus its amplitude, hf: thus, dy 4 hy = d¢ 4+ he. If one
set of yarns is sized or is held under tension, that set will probably
remain round, and all of the flattening will occur in the opposite
set of yarns. ' ' _

The shrinking or stretching of a fabric is governed by
three effects: (1) crimp interchange, (2) change in yarn diameter,
and (3) change in yarn length, 1. The last factor can usually
be ignored except in the case of very extensible yarns. Both (1)
and (2) often occur similtaneously, which complicates an analysis

- -



Table I
Galculations For Typical Changes In Fabric Geometry Shown In Figure 3

Configuration Points for warp yarn geometry Points for filling yarn geometry
Loom state Point 10 (Jam) v Point 14
Assume: 1,/D = 1,067 14/D = 1,265
Calculates he/D = 1 o hy/D. = 0,500
Read from graphs h,/D = 0,500 %Cp = 10,6
%oy = 20,9 Ky 21220
' Ko = 16.07

Calculate:

>z 14047/14265 = 0,83

Crimp interchangest
Calculate:
Read from graph:

Calculate:

Point 12
b/ D= 1~hy/D =030

%C' - 5.0
Kf = 14,00

=1 = 120.3
% 5.
w« «0,151 shrinkage
= 0,151 stretch in length

Point 8 (Jam)‘

hy/D = 0,700
K' - M.65
Sr = 1~ 110.6

132.8 .
= 0,167 shrinkage in width

Swelling (maximum)is® Point 11 (Jam)
Read from graph: 1,/D = 0.95
%y = 16.80 '
h,/D = Ould5
Calculate: Sy = 1 - 105.0
= 0,105 al;rinkage in length
new D) - (old 1/D
(old D (new 1/D ¢
» (pew D) = 1.047 = 1,265
» » (old D 0.95 ¢
or, each yarn swelled
Flatteningt Point 13
_ Calculate: (new 1,/D) = L.047 = 1.396
0.75
Read from graph: %0, = 8.0%
Kg 210,75
Calculate: Sy=l-

.= =0,119 shrinkage
= 0,119 stretch in length

Point 9 (Jam)

#Cp = 25.8
hf/D w 0,585
Ky = 15,37
Spezl - 8
t 125,
= «0,056 shrinkage

‘= 04056 stretch in width
3 since 1 is constant.

= 1,105,

~LL,

0.105 in diameter,

Point 15
(new 1,/D) = 14265 = 1,687
4 [\ 8

%Cf = 5.0
Ky = 8,66

Sp = 1 « 110.6
- 105.0
= =0,056 shrinkage
= 0,056 stretch in width

# This configuration illustrates the loom state because crimp is minimum in fillir;g. Assume round yarns,

## Assume warp tensioning to produce minimum crimp in warp, keeping yams round.
1/D lines until filling hits jam line,
##% Assume yarns remain round, swell equally to minimum density, or maximum D,

points move along

Solution: Keep 1/D's constant;
at which both yarns jam against

each other, Solution: Keep 1's constant, increasé D to give minimm possible 1/D'%s as read from jam line

atx - 0.83-

Wi Assume yarn diameter which is verticul to cloth plane is reduced 25%—~that is, flattening coefficient e = 0,75,
Soluticn: Keep l's conatant, decrease D so that new D = 0,75 (old D), Assume h/D's constant to determine
new state of crimp balance.

- g



or prediction of a fabric change. The two effects can be studied
separately by use of the graph: the changes in fabric length and
width for each type of structure change are shown in Table I. The
changes in length or width can be calculated from either the change
in crimp or the change in threads per inch.

100 4 03 100 ¢ (%Cs)o; (3)
S - - - — B
vz 1 o0 (e TEREE 22l

Swz 1= (Tg)o/(Tp), Seal=(To/(T)y; (&)

where S, = warpwise, or length, shrinkage; Sp @ fillingwise, or.
width, shrinkage; %Cy = % crimp in warp yarns; %C¢ = crimp in

filling yarns; Ty = warp threads per inch; Te = fil1ling threads per
inch; o = original fabric structure; s = ghrunk fabric structure.

If the calculated value of S, is negative, then the
fabric has stretched instead of shrunk. Calculations of shrink=
ages from crimp changes are given in Table I. Calculations using
values of T in equation (4) give the same values for shrinkage as
are obtained by using values of crimp; this method is useful in
checking the accuracy with which #C's and K's are read from the ‘
graph. It should be pointed out that the change in K upon shrink-
ing reflects a change in both T and D, and when Tts for the shrunk
cloth are calculated from K's for the shrunk cloth, the change in
D must be faken into account by using the value of D for the
shrunk cloth.

Locating D on the Main Graph

The geomstrical analysis of any particular fabric consists
merely of locating the two points representing that fabric on the
main graph. In order to do this, it is necessary to obtain the
%C®s and K's for each set of yarns. The value of K is obtained -
from T (threads per inch) and the proper value of D (the sum of
diameters, or amplitudes, in mils) by the expression K, = 0,01395 DT,.
However, flattening of yarns is usually present to an unknown degree,
and the value of D cannot be calculated from the sum of the di=-
ameters of the individual yarns because these are obtained on the
assumption that the yarns are round. The proper value of D¢ for
flattened yarns can be obtained from the main graph by the simple
procedure shown in Table II and illustrated in Figure 4. The pro-
cedure is based on the use of Peircets approximate equation for
amplitude:

hy = 136 %0; )
T2 ‘
The sum
l t h De (é)




Example of Locating Precise D,

. Table II

W X F
Threads/in., T 72 X 53 a4
Crimp, %C 10.8 16,6 } Given
136 VI /T, = by 8ulk
h; $ b, = D, 16.1
«01395(T))16.1 = Ky 6.2 | Approximate
+01395(T3)16.1 = K, 11.9
Read h/D!'s from graph:- 04520 ‘0ek450
Adjust sum h/D's ~ 1,0,
- or (h/D)/0.970 gives: 0.536 OuLibL,
" Using adjusted h/D's
read Kt's from graph
as in Figure 4: 15.7 11.6
K/.01395T = pt, 15.7
' Precise
© (0.536)(15.7) = h1y 8ul
* (0.464)(15.7) = nt, 7.3

Interpolation
Scale

" ] 12
K= .6

Location

l-lo-.

of Dy

| 16
K=15.7



then gives an approximate value of D¢, allowing calculation of

K's. . These values of K can, however, ba considered as precise
values even though calculated from approximate h's if one assumes
that h/D's are independent of D--that is, the error is distributed
proportionately between the two values of h. Of courses, if it

is known that all of the flattening occurs in one set of yarns
only, such as would occur with hard sized=warp yarns, all of the

' error can be proportioned to the soft yarns, thus changing the
h/D values. In making such assumptions, one must use great care

in determining proper values for % crimp, since extensible yarns,

or stiff yarns with crimp set into them, will give slightly
erroneous experimental results, and small variations in crimp

have a rather large influence on the results. It will nearly

always be possible to determine D¢ in this manner, with a precision
of about 1% or better, since X can easily be read to the nearest 0.1.

This procedure for obtaining the precise value of Dg
is offered as something of an improvement over the method given
by Peirce, using the following equation:

T, - pNX) + pN2C, , (7)
I - TFO0O(CL ¥03) = (51 F35,)

where p.= 1000/T = thread spacing, and S = correction factor to

be read from a graph ofV%E'vs. D/p. It is necessary to go through
the above equation once without using the Sts in order to get an
approximate D with which to calculate one scale for the graph.
Thus, a trial=and—-error method is necessary. It is not simple in
the present procedure to apportion all of the error to one set

of yarns.

, 4 further example of locating a fabric on the main graph
is illustrated in Figure 5, which depicts the various fabric
structure changes -in an example given by Peirce. Various weights
were hung on wet strips of fabric and Peirce then analyzed the
structures after drying them under tension. The calculations
for location of the loom-~state sample are shown in Table III,
and the values of K and #C for the variocus stretched samples are
shown in Table IV. The lines for the average 1/D values computed
by Peirce are shown in Figure 5. It is interesting to note that
the’ initial warp tension produced almost pure crimp interchange,
as illustrated by movement of the points parallel to the constant
1/D lines, while the initial filling tension produced almost pure
flattening, as illustrated by movement of the points parallel to
the constant h/D lines.

Description of the duxiliary Graph

The terms usually used to describe a fabric are texture, T
(threads per inch), yarn number, N (or cotton count or denier),

- 11 ~




DINENSIOMAL  CHARGES 1K A CANVAS

% CRIMP -

Tee—===" WARP TENSION
——— FILLING TENSIO

R
K=0.0/395TD
Table III

Locating Precise D¢ for Loom—-State Sample

W X

F
Threads/in., T 32.4 X 32.8
Crimp, %C 8.7 o 6.2 Given
Yarn Nos., Nj, N, 6.7 6.3
36/ = 4 13.8mils 4.4 mils
Rouhd-yarn sum, D 28.2 mils _
Reduced yarn No., N 6.5
136\!%01/'r2 = by 12.2 mils 1044 mils § Approxi-

hy + hy = D 22.6 mils mate
h/Ds 04540 0.460
Read from graph, K 10.3 10.4
K/0.01395T = D1y 22.8 mils ‘
: : Precis

(2248/22+6)h = h! 12.3 mils 10.5 mns} eclee

Flattening coeff., e = 22.8/28:2 = 0.81
Thickness, G = 13,8 + 12.3 = 26.1 mils

-12?



Table IV

Points for Graph from Peirce's Data for
"Dimensional Changes in a Canvas"

Load#*

Cloth W F D/ Py D/ P2 Kl** KQ*'* %Cl %Cz
0 Loom 737 WTWT 10429 10.41 8.7 642
1 Shrunk .508  .898 12.65 12.51 12.5 10.3
2 .5 W93 .882 13,01 12,30 8.3 15.5
3 o5 - o801  .824 11.17 11.48 10.8 7.4
L 1 o860 787 11.98  10.97 5.6 14.l
5 1 LS11 865 11,30  12.,0¢ 13.6 645
6 2.5 - 835  .739 12,33 10.30 2,8 20.7
7 245 o727 o860 10.13 11,99 19.3 2.7
8 5 870 J705 12,12 9.8, 2.3 21,0 |
9 5 L722  L8L0 10,08 11.71 19.6 2.3

10 10 —- 2913 L7734 12.72 10.22 2.4 2346
11 10 730 866 10,18 12,08 23.8 1.7

* Load 1bs.) .on 2 in. X 18 in. wet strip of fabric.
ad, {tbg.g o P

and welght, W (ounces per square yard). These terms are not ‘
avallable directly from the main graph, but they may be calculated
by means of a few simple relations. These relations have been

" reduced to graphical form in Figure 2, the auxiliary graph. This
has been done despite the fact that the equations involved are
quite simple; the graphical approach has the advantage over mere
caleulation of particular values in that limits are always clearly
depicted. ;

.It is apparent from the equations shown along the base
of the main graph (Figure 1) that T is easily found from K if D
is known, since

Ky = 001395 DTy. ‘ (8)

It is developed in more detail in the fbllowing section
that D can be stated in terms of N, the reduced yarn number,
as follows:

D = 1/.01395W = (2) (35.85)¥: (9)
Ky = T,/YN (10)

In FPigure 2 various sets of lines have been super-
posed on a background set of rectangular coordinates relating T,
threads per inch (along the left side), to K, reduced cover factor

- 13 -
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" (along the top). Various values of N, reduced yarn number, are
given on the set of straight lines sloping downward to the right.
Any point along any one of these N lines gives a particular value
of T for that value of N and K. (These N lines should not be
confused with the Q lines, which also curve down to the right.
The 9 lines give fabric weight in ounces per square yard; these
are discussed later.) ‘

. K is called the reduced cover factor because N in
equations (9) and (10) is the reduced yarn number of the fabric—
i.e., the cotton yarn numberf the hypothetical yarn whose diameter
is the average of the warp and filling yarn diameters. It is
obvious that this averare diameter 1s D/2 since D is the sum of
warp and filling yarn diameters:

D= d; + dy | (11)

If D is known from the main graph (obtained as described
in the preceding section), the proper N line which relates Ky and
Tw may be found quite simply by using the base scale in Figure 2
to locate the proper value of N opposite D/2.

. -The examples worked out previously in Table I are carried
out in Figure 6 on the auxiliary graph by lifting Just those
portions necessary for illustration. In order to do this it was
necessary to assign a value to D; the value of 15 mils was selected
arbitrarily for the loom state. Reading the base scale in Figure 2,
it can be seen that N = 23 lies opposite D/2 m 15/2 m 7.5 mils.

The line N = 23 thus depicts the relation betwsen K's and T's

for the lbom state. The flattened-—state N value lies oppoesite
De/2 = (0.75)(15)/2 = 5.63 mils, or N = 41. These lines are
shown in Figure 6. It should be pointed out that if only crimps
and threads per inch are known for a fabric, it is possible to
define the fabric structure on the main graph and to locate the N
line on the auxiliary graph. This N value, however, does not
necessarily represent any kind of average of the warp and filling
yarn numbers; it is merely the yarn number of a yarn with diameter
equal to the average of the vertical diameters of the warp and
filling yarns at the crossovers, and these latter are usually
flattened.

It is also important to note that the diameter of the
warp yarns alone, or of the filling yarns alone, can assume any
value desired (i.e., ='JN27N1 is not fixed), and that only their
sum, D, is nedessary to determine the relation between T and K.

It can be observed by a little study of the unit cell cross section
shown in Figure 1 that one yarn~-say, the warp—can be made smaller
in diameter while the filling yarn is made larger (keeping D
constant ) without changing the essential geometry of the unit cell,
the only change being the movement of the point of tangency of the

—14..



@2=60 ) from pase

g denier;=150f s.51e opposlle
2
2. N=36
<o,
3 y
. Qge
. : 7
Assumptions &R %
() D =15 mils e,
. e‘e ?Q/
in Loom State
(2) 3=15 . , Np= 16 -
‘. . ' d;= 90

denier; = 330
: o '_Fig.‘_G.‘ qumple of Use of Auxitiary Graph
NOTE : MNqn, ndy", and "denierl" could be expresséd as "New,

nder, and tldenierfn- and "Non, nd2 , and "denlerz" as "Ny",
"dy", and "denierym. The subscripts 1 and 2 are used merely to

' emphasize that the larger N value is always read along the 8= 2.0
line and the smaller N value always along the base, regardless of

which is warp and which is filling.




two yarns along the radius line defined by 8, which, along with
all the other values. remains constant.

The reduced yarn number, N, is separated graphieally
into its two real components, Ny and Ny, by means of the:set of

divergent straight lines of various values of@running downward

to the left from the upper right-hand corner of the graph (Figure 6),
in conjunction with the base scale across the bottom of the graph
giving yarn number, diameter, and denier. This operation is shown
in Figure 6 for the loom~state example. The flattened state can
also be separated into Ny and Ng, but the values for Ny and Ng

thus obtained are not real because they represent the yarn numbers
of round yerns having the diameter to which the real yarns have

been flattened. Further, it is obvicus that if the flattening

is not proportional in each yarn, the@value will change. The

- diameter scale can be used for trial=and-error solutions for

actual cases. The equation which relates the scales for diamater
and yarn number is
- dy = 35.85/ 4N, | (12)

The assumptions about yarn density which are necessary
for this equation are discussed in the next section.

Various other dimensions obtainable from the auxiliary
graph are shown in Table V (except for the h's, which were calculated
from the h/D's given previously).

. The fabric thickness is always given by whicheyer set
of yarns gives the largest value of

G=he¢d, (13)
where G = thickness in mils,

The fabric weight is obtained by the sum of the weight

in warp and filling yarns. As indicated in Figure 6, the Q values

should always be read at the intersection of the T lines and the
sloping N lines which represent the actual yarn number regardless
of diameter. The equations which are thus represented graphically
are as follows:

W, =g, (I + '%,/100) (1)
0.686 T, (1 4 %C,/100)/N,

=G (1 % %;/100)

= 0,686 Ty (1 + %Cp/100)/Np

Total fabric weight = W, + wp,

11

We

where W = weight in oz./yd.2 and Q = value read from graph.
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Use of Graphs for Fibers Other Than Cotton

It should be emphasized that determination of flattened
D¢ from observed plain-weave thread spacings and crimps by the
process described in a previous section (page 11) is vslid for
any type of flexible yarn, regardless of yarn density. The rela-
tions portrayed by the main graph are concerned with linear
dimensions only. The yarn density is used to convert these
linear dimensions to weights by relating yarn diameter and yarn
number (or denier). This relation is as follows: .

dy = 34014/ o ol a oL/ iy : (15)
z 0.&68\idonier'/¢'f" |
s O.héSVdenier,,/ Pw

= 35.85/\N_ far cottom,

where D= yarn density :Y#," = fiber density, and¢ = packing
coefficient. ‘

Cotton yarns were assumed by Peirce to have Pz 0.9 ge/ccey
which for?: 1.54 go/cce gives § = 04589, or 41.1% voids.

When equation (15) is substituted in the summation
equation (11) for D: :

Dz 3b/Vpo K, 4 3h.1A/V,°fo (16)
= Gew) /iy 5y Vap /Vp

= (2) (LN = (2) (35.85)/Vw,
where 2/ Ws Y/ \/-ﬁ: L J 1/VN:, N = reduced yarn number as defined
previously, andp z average yarn density.

- The reduced cover factor, K, is actually defined in terms
of T and N (equation (10)), and, hence, in order to express it in
terms of D (equation (8)), it is necessary to mske certain sssumptions
about the yarn density. The value assumed by Peirce for cotton yarns
P2 0.9, or, more precisely, 1/Vp = Vv = 1.0500, where v is specific
volume, cc./ge) was taken, which results in the constant 0.01395
used in equation (8). This assumption does mot limit the use of
the graph to cotton yarns and fabrics. The geometry of the fabrie
is the same, but the K values are in terms of cotton yarns which
- have the same diameter as whatever fabric or yarns of a given D
are being considered. Thus, the proper name for the K used on the
graph is "equivalent cotton plain-weave reduced cover factor."

For example, a nylon fabric could have a :

-l7 =
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reduced cover factor K :vT/‘f'ﬁ:‘where N would be the cotton yagn
number of the diameter-averaBe yarn of warp and filling. This K
would not- be usable in the main graph, since complete cover would
not be given at K = 27.93, but is given by K = 27.93. The proper
K for the graph is obtained by inserting the actual D, in mils,

in equation (8).

Fiber densities can be obtained from any textile handbook,
but packing coefficients (or % voids in the yarn) must be determined
by experiment for the particular yarns involved, or must bs assumed
on some rational basis. Peirce found that variatiuns in packing
density and fiber density tended to cancel out one another, and
that therefore a standard yarn density of about 0.9 was a "reason=
ably good approximation for most textile materials." However, the
entire shape of any woven structure is quite critically dependent
upon the precise value of yarn density, and calculations of devi-
ations from the simple ideal form, such as bowing, flattening, etc.,
require the use of the more precise value. It 1s unfortunste that
handbooks do not list the % voids of different types of fibers in
yarns of various twists.

Weave Density

/s .

In the concept of "weave density" outlined by Peirce,
the swelling is allowed to continue until both sets of yarns jam
each other and the structure is determined by A, which is laid off
along the jam line on the main graph. Although)is not exactly
linear along the jam line, the use of the interpolation scale
gives good approximations for intermediate values.

The weave density of any fabric is readily obtained from
the graph by use of the 3 values. The weave density is obtained
from the square of the value of the actual 1/D divided into the
1/D value which terminates on the jam line at the particular
value of 9§ pertaining to the fabric. The relation is derived as

follows:
D = 68.28/ YW. (am)

Maximum D occurs when both threads jam. If N = constant, Dj at
Jam glves weave density, pw: _

(pw = 68.28/ND‘:]2') - (p= 68:'..28/ND2)

e =p 00 (18)
But 1 is also constant; hence:
A= p WA/ 2 09071/ P /D2, (19)
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wheregﬁw = weave density, g /cc., or density to which both yarns
; @ = actual density, g. /cce, of yarns = 0.907;

must 11 to jam fabric
1/D is given; and 1/Dy =
value of fabric.

Example:

oo 1/Dy = 1.047

/iw
Example:

.11

(04907 (1.0L7)2/(Lek5)?

o 1/Ds = 04935 19/D = .25 (1

J

/9w

11

(0:907)(1.16)%/(1.425)*

# 1/P line which intercepts jam line at ~

Assume original fabric);;-_ 1.0, 12/D = i.LS

= 0473 g./cc.

' 1,/D; = 32

Assume original fabric)\ = 0.8, 12/D = 1,00

= 1.16)

= (0'.907)(0.93)2/(1.00)2 o 0,782 g./cc.

Use of Graphs for Weaves Other Than Plain Weave

: As pointed out by Peirce, weaves other than plain weave
contain the plain-weave unit cell at the yarn crossovers, and the
graph for the plain weave can be used to depict these weaves by
applying the proper correction factors to observed c¢rimps and

threads per inch.

The correstion factor is derived by adding

the length of straight yarn in the floet to the unit cell, and
depends upon the type of weave and number of cross threads per float.

Basket (or Matt) Weaves.— The correction factor for
basket weaves was given by Peirce, but is restated here in slightly
more general terms to coincide with methods of calculation already

presented herein.

equivalent:
!
Tw = Tw/IRys
Cu' = Cu/Res
whare

13

Ry - (1 - (
-1-(

Rp =

Tf ' ‘Tf/ fRf
Cf': Cf/Rw

fe-1
b

f-1
f

)

) (

Xy

1000

X

1000

e

M.

Primed quantities refer to the plain-weave

(20)
(21)

’

f = number of cross threads per float, and X = center~to~center
spacing, in mils, of threads not separated by cross yarns.
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The quantity X may be measured with a magnifying mi-
crometer in an actual fabric. It can often be assumed that

X z 4, the yarn diameter, which, in turn, may be calculated for a
circular yarn by using equation (15). However, the factor R is
fairly sensitive to changes in X, and thus a value should be used
which gives a reasonable degree of flattening as calculated from
-the equivalent plain-weave D.

Twill Weaves.~ Only approximate analyses can be made
for twill weaves, since an underlying assumption of the plain weave
is that the projection of the threads into ths plane of the fabric
is a straight line. In the twill weaves the yarns tend to bow to
one side at the float, which increases the crimp over what it would
have been had the yarn.been. straight. Twill weaves can thus be
studied by calculating this increase in crimp. Factors to convert
to plainwweave equivalents are' quite simple when 1t is assumed
that the thread spacings are the same at crossovers and floats:

Ty'z Tw Tp'z Tr. (22)
The amount of straight yarn in the float to be added
to the crossover length depends upon the symmetry of the twill,

and the correction factor for symmetrical twills (2/3, 3/3 types)
is given:

C= 1ewfp & 1 3 (f=1)p ~ fp

fp fp

: |
=1 -p =c¢'/t (23)
fp

VoGt = fCy3  Cp' = fCp,

For asymmetrical twills (2/1, 3/1 types) the correction
factor is:

i) e v () )

TETOE)

(24)




An eguivalent plain-wsave D can be calculated from these
equations and used in equation (8) along with the equivalent plain-
weave T's to obtain the two X values on the main graph which depict
the plain-weave unit cell. If the observed twill crimps have been
increased by bowing of the floats, this increase must be estimated
and subtracted from the observed twill crimp before insertion in
equations (23) or (24). The degree of flattening can then be
obtained from the locsticn of the plain-weave unit cell on the
graph. Trial-and—error calculations will usually lead to reason—
able values cf bowing and flattening. This type of structure
analysis must be accompanied by detailed microscope observations
and a knowledge of the history of the fabric. For instance, the
loom spacing of the warp in the reed has in some instances be:cn
used as a good estimate of the value of the plain-weave 1 for the
filling yarns in a 3/1 twill.
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APPENDIX

Basic Variables and Equations

Actually, the situation of eleven variables is not as
bad as it sounds, since the group consists of five pairs in which
one value is assigned to the warp yarns and the other to the
£illing yarns, plus the eleventh variable, D, the sum of diameters.
The five variables are as follows: p, thread spacing, mils; 1,
thread length in unit cell, mils; h, thread amplitude, mils; C,
fractional crimps (100C = %C); ©, angle of inclination of thread,
radians.

Peirce?s analysis linked the eleven variables together
with the following seven equations:

Projection parallel to cloth plane.-
by = (1; ~ D81) sin 8; + D(1 = cos &) (1)
hy = (1 = DGZ) sin 8, ¢ D(1 =~ cos 8,) (2)
Projection normal to cloth plane.-
P2 = (13 ~ DGl)'cos 61 4 D sin & B )
pl = (1, ~ D8,) cos 8, ¥ D sin 62 (L)
Définition of crimp.~ |

Cy = (11 - p2)/p, (5)

€2 = (12 ~ P, )/p, (6)
Relation between paths of two sets of threadse-

D=hy $h, | (7)

In his analysis, Peirce further simplified the situ~
ation of eleven variables by taking one of the variables, D, as
a scale basis (or divisor) for thres pairs of the other quantities:
py 1, and h. However, no further simplification was possible, since
no mathematical device could be found to eliminate and reduce the
seven equations to one or two simple relations involving only
thread spacings (pl and p2), crimps (C and Cp), and D. The best
solution was the use of a table for p, h, and C for given intervals
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of 1 and ©, but even with the tsble it is necessary to perform
lengthy interpolations for any particular value. Peirce presented
one graph and a graphlike device, but the former did not give
precise intermediate values and neither one gave limit structures.

Construction of the'Main Graph

A composite graph has been developed which depicts’
predise values for all of the variables as well as limit structures
by using %C, crimp, versus T, threads per inch (T = 1000/p), as
the bssic coordinates, and superposing sets of lines for constant
1/D, h/D, and 6. Actually, T is expressed in terms of K, the
reduced cover factor, which will be explained later. The super-
posed lines are located as folilows:

Constant 1/D Lines

These lines are derived from the definition of crimp; the
form of equation (5) may be rewritien in the following fashion:

C1= (11 - Pp)/py, or 1/p2 = (1 + C1)/1,. (5)
Multiplying both sides by D:

(1 4 C1)D/11 = D/P, = T,D/1000 = Kp/13.95, ()
since, by definition, 1000/T = p, K = the reduced cover factor.

If D/1j = constant (which is true along constant
1/D lines), then the first and last terms in equation (8) reduce to:

K2 pund a_+ bCl, (9)

in which a and b are constants. Thus, equation (%) shows that
constant 17/D lines are straight lines due to the linear relation
between K,, the reduced cover factor for one set of yarns, and Cj,
the crimp in the other set of yarns. A similar situation exists
between Ky and C, for constant 1,/D lines. The subscripts are
carried here to emphasize that the relation is between crimp in
one set of yarns, "1, versus reduced cover factor (or threads

per inch) in the other set of yarns, "2," or vice versa. Figure 1l
shows these straight 1/D lines on the #C; versus Ky graph.

Constant h/D lines

The shape of constant h/D lines is that of approximate
parabolas indicated by the approximate relation between ¥y and

Ky (or #, and Kj) derived by Peirce as follows:
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Eéuations (1) and (3) were expanded to give:
hy/D = 1.36 Tcﬂ P,/D) (10)
- 2136 %/ - Ler \ Koy/x,

(also‘ a similar equation with reversed subscripts).
When h/D = eonstant:
2
Kz oot l%cls or Klz pred .'%CZ’ (11)

in which a is an arbitrary constant, K is the reduced cover factor,
and %C is the crimp,

Exact values of %Cl' yersus K, for plotting censtant
h/D lines were obtained by the use of Peirce's (1) table (Table II)

relating values of h/D for various values of 1/D and (1 = p)/D.
This was accomplished very easily by ma an intermediate plot
of h/D versus C for a family of constant lines. It was then
a simple matter to pick even values of h/D along these 1/D lines
and transfer them by means of the corresponding C value to the
eonstant 1/D lines on the %Cy versus K, graph. Smooth curves were
then drawn through these points to give the constant h/D lines, as
s?own in Figure 2. The curves thus obtained give exact ¥alues of
h/D.

Constant © Lines

These are derived by substituting the definition of |
crimp, 1) = P,(1 4 C1), and the definition of reduced cover
factor, 13.95/Ky = 1000/ T = pzyn, into equation (3) to give:

%1 = (1 = cos €1)/ cos &
= (sin &) = &) cos 0))K,/13.95 cos &, (12)

When © = constant, this reduces to

%cl = a =~ bK,, , (12&)
in which a and b are constants. These lines are shown in Figure 3.

Limit Structures
These are located as follows:

Jam Line: A thread is "jammed" when the straight
_portion (1 = D®) = 0, as illustrated in Figure 4; it follows that:
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. %C|

Appendix  Fig. |

Constant £/D Lines

(5) &= (4-p2)/p2 5 4= p2(1+C))
(8.) D/p2= T,D/1000 = x Ky= (1+¢,) D/2,
1f D/f = constant, then:

(9.) Kgp= a+bc,

4/p: 2.0

£,/D=10

Appsndix  Fig. 2 .
Constant h/p Lines

A.Peirce’s table 4ives rigorous values of h/D in terms of 4/D and (2-p)/D.
Since c=(4-p2)/D =L £,/0-(-p2) /D] , plot W/D vs.Cy for constant £,/D fines
and pick even values of h/p along £,/D lines to transfer to ¢, vs. Ka, qraph.

B. Approximate parabolic form of constant h/p lings indicated by Peirce’s
expansion of eduations (1) and @) to give :

(10) h,/p=136T¢, (p2/D) = 13607C, /T, D = 1360VE, /K,
s K; = a¢C, when Wn/p=constant

%G
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Appendix Fig. 3
Gonstant -6 Lines

(3) p2=(4,-De) cosé, +\D$’ir'|. a
Substituling: p2/D=1000/T;D= l/oLKz

2= pa(1+¢y) -

(12) ¢, = (1-co58,)/cas e, — &Ky (sine, - &, cose)
or, ¢,= a-bkKy; when o= constant

I ’ &= 1,0 radians
a4 / <~=51°_Ial
e 4 7 .
e Vi
4 4.
e / 277
p ’ <y . -
%4 a4 7 o //’ '//
- //// /,/ / /’r /4'71/0=I.0
Z /. ) _ .
- / i o , &= 0.5 radians
L~ : /
' ) = 28-39
- o P -
- - L mm——
-.—.’-‘—IL—— . / /ﬁ ___________ o
~-='==:*'i'+4"r“T"r—1— A | 1 1 i 1 1
L _ "

Appendix. Fig. 4

M LINE & GRIP o
LIMITS

%c

W _Jammed, _F Not Jammed
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Y a (13)
Also, equation (3) reduces to |
P,/D = sin (11/p).= 2000/TD = 13.95/K,, (W)

in 'hieh subscript "1" refers to warp, W, and subscript "2®

refers to filling, F.

Using the first two parts of equation (14) and substi-
tuting in the definition of crimp (equation ( S»e

€y = £(1/D) = sin (1)/0).7/stn (1)/0). (15)
‘Substitution of the second and fourth parts of equation
(14) gives the equation of the "Jam line" in terms of £ and
K2 only:

13.95/K; 2 ain [;'(; ¢ 01)13.95/!!2 L | (16)

Even values ofk:,l»g/ll are located along the jam
line by selecting even values of \and of 1,/D to give particular

values of 1,/D, which are then inserted in equations (14) and
(15) to give points for the graph in terms of %£C) and K, which
define the jam line. The "unit cell structure" untionod earlier
is dofinod by Aand either one of the 1/pts. -

Minimum Crimps (in F When W Is Jammed): Since the
straight pertion (1 = D@) of the warp thread equals sere, equation
(1) reduces to:

hy/D = 1 = cos & = 1 = cos (11/0). (17)
Combining this equation with equation (7) gives
h,/D = cos (1;/p). | (18)

The particular values of 11/D used above, which go with

‘the propor even values of )\ and 1 g s were then used in Peircels

table of h ys. 1 and 1 = p to get precise values of C, to plot

on the even-value lines of 1 /D. These points were tﬁ'len joined
at equal values of Ato give é\oxlines shown as solid lines curwe
ing down to the left in Figure 4. The 1/D lines have been

“changed in Figure 4 from Figure 3 in order to show the ones which

are related to 1imit points, such as 1/D = 1.5708 and 1/D = 1,0472.

Swollen Structure: Equations (19) and (20) show special
cases of the swollen structure.

6, » 1,/D : (29)
cos (1;/D) #cos (A1yD)= 1 (20)
-28- |



Tightest Weave Containing Zero Crimp: Equations (21)
and ( 22) show cases of the limit fabric which has sero crimp one
way and maximum crimp the other~—i.e., the Wejammed, F-straight
fabric whose points lie at the opposite ends of 1/D & 1.5708.

A fabric with both points on an 1/D line less than 1.5708 cannot
have zero crimp.

8, =0 (21)
9 = 11/1) = 90° = 1.5708" radiane (22)
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